

About me

- Worked in the EPPI-Centre, UCL for a long time
- Systematic reviews - mostly for Department of Health \& Social Care / PHE
- Addressing questions beyond effectiveness
- Long-standing area of work in making the review process more efficient using new technologies

Outline

- Automation in systematic reviews: the story so far
- Newer technologies using new enablers
- Generative Large Language models
- How can they be used (in reviews)?
- When can they be trusted?
- Are they a gamechanger?

Automation in systematic reviews: what can be done?

Study identification:

- Citation screening
- Updating reviews
- RCT classifier

Mapping research activity
Data extraction

- Risk of Bias assessment
- Other study characteristics
- Extraction of statistical data

Synthesis and conclusions

Automation in systematic reviews: what can be done?

Study identification:

- Citation screening
- Updating reviews
- RCT classifier

Mapping research activity
Data extraction

- Risk of Bias assessment
- Other study characteristics
- Extraction of statistical data

Synthesis and conclusions

Automation in systematic reviews: what can be done?

Study identification:

- Citation screening
- Updating reviews
- RCT classifier

Mapping research activity
Data extraction

- Risk of Bias assessment
- Other study characteristics

‘Traditional’ tools

- For example
- Ranking and re-ranking records when screening titles \& abstracts
- Automatically 'clustering' records to enable us to explore datasets
- Classification (e.g. RCT Classifier) where we can 'teach' the machine to perform certain tasks (usually IF we have lots of training data...)
- We feel we know where we are with these kinds of tools
- They are useful, not game-changing

Enablers of a new generation of digital evidence synthesis tools

Increased availability of open access research

Increased computing power (both memory + compute)

Advances in machine learning technology

"

New generation of 'Al' tools

- Promise to do more than achieve minor increases in efficiency
- At times, change the review process more fundamentally
- More unsettling
- Appear to 'understand' language
- They can answer questions
- They can synthesize knowledge
- But can we use them?

New approaches: more contextually 'aware' classification

- The theory:
- When a human reads, they read in the light of their pre-existing knowledge
- The previous examples do not do that
- Is it possible to address this using machine learning?
- Word embeddings
- E.g. Word2Vec
- Transformer models
- E.g. BERT (Bidirectional Encoder Representations from Transformers)
- LARGE 'generative' transformer models
- Key to bear in mind: these are all (sophisticated) statistical representations of words / phrases that tend to 'go together'

Starting points

Decisions that affect people's lives should be informed by reliable research

Individual research studies can be atypical; we need to draw on the sum of current knowledge

Therefore we use evidence synthesis

Evidence syntheses can be unreliable for two reasons:

They have been conducted badly
The research they contain is unreliable

Critical questions to ask when considering using a new tool for evidence synthesis

Does it enable me to draw on the sum of current knowledge?

Does it enable me to distinguish between reliable and unreliable research?

Continuous update of reviews in EPPIReviewer

Maintains a 'surveillance' of the literature as it emerges to maintain reviews up to date

Papers included in systematic reviews in EPPI-Reviewer

For example... full workflow in our map of COVID-19 research

Treatment
Evaluation
Genetics / Biology

Transmission / Risk / Prevalence

Social / Economic / Indirect Impacts

Diagnosis

Case Study -
Organisation
Case Reports
(Patients)
Treatment
Development
Human judgement required when machine is 'unsure'

From our initial purely manual workflow, we have now moved to a position where almost all of the work is carried out by automation tools and technologies

For exannole. "Uull Mol Does it enable me to draw on the sum n 10 Of COM D-19 reg of current knowledge?

Does it enable me to distinguish between reliable and unreliable research?

Wellcome Open Research	
	* ${ }_{\text {a }}$
Cost-effectiveness of Microsoft Academic Graph with machine	
learning for automated study identification in a living map of coronavirus disease 2019 (COVID-19) research [version 1; peer	
review: $\mathbf{2}$ approved with reservations]	
\tan Shemilt ${ }^{\prime}$, Anneliese Arno ${ }^{\prime \prime}$, James Thomas - '", Theo Lorenc ${ }^{2}$, Claire Khouja², Gary Raine², Katy Sutcliffe', D'Souza Peeethy', Irene Kwan', Kath Wright², Amanda Sowden?	
*merimens	
	cpen reer terioux

Human judgement required
when machine is 'unsure'

From our initial purely manual workflow, we have now moved to a position where almost all of the work is carried out by automation tools and technologies

Why is this trustworthy?

Not too far from 'traditional' methods

\sim

Its dataset has been validated as being sufficiently comprehensive for this task

It uses machine learning, but in 'standard' ways: training data are used to build a model and a transformer language model is used, but not in a 'generative' way

But...

- While this work built on enablers - open access data, more compute power and advances in NLP...
- Training data was needed (in our case A LOT)
- The digital evidence synthesis tools were partly developed for the project
- The evidence synthesis team had technical development team working with them
- What about more generic and less tailored tools?

Language models are statistical representations of text

Language models are statistical representations of text

Language models are statistical representations of text
\qquad

Language models are statistical representations of text

Language models are statistical representations of text

Language models are statistical representations of text (older)

Language models are statistical representations of text (newer)

Language models are statistical representations of text

Language models are statistical representations of text

Concepts are represented statistically, e.g.: King: $(2,4,0)$ and the 'distance' between them is calculable Queen: $(6,4,0)$

A simplified example...

- The number of dimensions is far larger in reality
- Words and phrases are transformed into 'tokens'
- An 'autoregressive’ training technique is employed
- Where the model is repeatedly prompted to predict the next (or missing) token or word

- Until the model gets really good at predicting the 'next' word: ideal for 'Chatting'!
(The G for 'Generative' in ChatGPT)

There's a bit more to it...

The vector representation of 'Standard booklet or culturally specific booklet' in a relatively small model

 $0.36013976,0.11168488,-0.8826529,0.30499974,-0.61958724$).8475377, -0.04597179, -0.87542784, -1.2497298, -1.3966353 $6,-1.5516366,0.27852532,-0.5363913,-0.9082526,0.9472602$ $-2.6695375,-0.8212619,1.0108871,-0.26738352,-1.6806457$ 635471, $-1.0505464,0.16111302,-0.52447796,1.1326048$ 6, -0.34324995, -0.10337649, 2.0728226, 0.99076116, 0.5624714 $, 1.4582725,2.9457908,1.089449,0.70196784,0.42033568$, $0.41895622,-0.13652393,0.16251555,1.4712256,0.5578942$ $-0.60894907,1.2349272,0.44403726,1.662781,-0.8934196$ $-0.18994598,1.5232059,-1.9309542,-0.05171094,-0.01452048$, , $0.4109342,0.41299063,-1.7656476,-0.2189122,-0.28390917$, $0.3907312,-0.761492,-0.14611599,-1.2543803,0.6881751$, $-1.4545729,0.24669233,0.87624246,-0.2645415,-1.4671133$ $-0.6511048,0.42600402,-0.44701585,-0.6163813,0.04587703$, $.39041552,-0.86050606,0.1927259,-0.4409482,-0.5748233$

Encoder / decoder architecture

- You might have heard the words 'encoder' and 'decoder' used
- 'encoding' is the process of taking text, and 'encoding' it into a set of vectors which represent its location in the language model
- 'decoding' involves taking a set of vectors as input and generating the next most likely word in the sequence

Combining decoder and encoder features

PaperTitle culturally specific interventions for african ... quit and win contest 1994

4 comparative effectiveness of the nicotine loze...

Abstract

This pilot study sought to dismantle the effic...

This study evaluates the European Quit and Win...

Abstract Long-term smokeless tobacco (ST)
use ...

Standard booklet or culturally specific booklet	$[-2.3340907,-0.17229328,0.3398211$,
European Quit and Win	$0.4653279 \ldots$
contest 1994	$[-1.6043215,-0.26843017,-1.7064254$,
	$0.623235 \ldots$
4-mg nicotine lozenge	$[-0.55147135,-1.3999828,-1.1085918$,
and tobacco-free snuff	$1.101721 \ldots$

Visualising topic 'space’

- Artificial Intelligence, ethics, fairness, Trustworthy artificial, Human, data, Large Language Models, Public, Impact, Governance
- Digital, Social Media, Impact, Technology, Business, knowledge management, Innovation, marketing, Study, public
- Financial distress prediction, prediction model based, Risk, Machine learning models, bankruptcy, Artificial, support vector machines, Data, neural, hybrid
- Financial, innovation, Venture Capital Investments, Market, economic, risk, business models, Investment Analysis Based, Trade, Law
- digital health, Care, precision medicine, Health Technology, Equity, Public, systems, Implementation, Support, model
- decision support system, model, management, Artificial Intelligence, fuzzy, approach, review, based, DATA, planning
- iSTE in Innovation, titles from iSTE, Entrepren, Accounting and Technology, Health, Global, Book, LAS VEGAS SANDS, Reviews David Crooka, Policy
- Artificial Intelligence, Health, Machine, big data, cancer, medical, Future, clinical decision support, intelligence technology, Equity
- stock market prediction, Forecasting stock price, based, Deep learning, model, Artificial neural networks, Data, prices, market volatility analysis, Matching Trading System - Artificial intelligence, IEEE Computer Society, Data, Review, future, Systems, Information Technology, Intelligence Deep Learning, Data Mining Algorithms, machine
- Artificial Intelligence, Book Reviews, Systems, research, Information Technology, future, Decision, Knowledge management, Data, Market
- Future, Digital, Research, Higher education, Social media, Public, Technology, Work, Development, Law
- education, learning, Artificial, Intelligence, Higher, impact, study, Open, future school development, Analysis
- smart sustainable cities, development, Digital, Energy, Urban, future, impact, innovation, Policy, Health
- Digital Transformation, Research, Development, impact of digital, Analysis, China, Study, Artificial Intelligence, Data, policy
- Blockchain, technology, Digital, Fintech, Smart, Analysis, review, application research based, Trust, Law
- Digital, Innovation, technology, future, Health, challenges, management, human, Role, Public
- General government, Africa, Growth, Development Outlook, Public, tourism consumption, health expenditure, impact, Social, GDP
- financial, Risk Management, business, corporate, model, Research, Technology, Intelligence, study, Application
- Book reviews, Full Issue, Introduction, matter, call, Program, issue pdf, Guest editorial, reviews announcements, Rumors

There are lots of new tools emerging...

- ChatGPT
- ConnectedPapers
- Scite
- Elicit
- Claude (2)
- + many, many more!

(full list of tools) There are lots of new tools emerging...

- ChatGPT
- ConnectedPapers
- Scite
- Elicit
- Claude (2)
- Consensus (plugged into OpenAl)
- + many, many more!

But everyone is using them!

Can I use them?
Can we trust them?
Are they a gamechanger?

Important to understand the architecture of the tool

- Does it depend on language model to provide answers?
- If so, does the training data contain all the 'answers' I need?
- And how reliable is it? (Does it make up answers?!)
- Does it use an external source of data?
- If so, what is the dataset? Does it contain all the answers I need?
- Does it synthesise the evidence? If so, how? Does it do it reliably? How can I know?

ChatGPT

JA Are mindfulness-based interventions effective for smoking cessation among people who smoke?

Mindfulness-based interventions (MBIs) have shown some promise as a complementary approach to smoking cessation for people who smoke. While more research is needed to establish their long-term effectiveness and determine how they compare to other smoking cessation methods, there is evidence to suggest that MBls can be helpful for certain individuals. Here are some key points to consider:

Does it enable me to draw on the sum of current knowledge?
Are mindfulness-based interventions effectiy smoke?

Does it enable me to distinguish between reliable and unreliable research?

Mindfulness-based interventions (MBIs) have s approach to smoking cessation for people who smo establish their long-term effectiveness and determine how cessation methods, there is evidence to suggest that MBls co el pful for certain individuals. Here are some key points to consider:
(65) Certainly! Here's your horoscope for September 28, 2023:

Aries (March 21 - April 19):

Today, Aries, you may find yourself feeling particularly adventurous and eager to explore new horizons. It's a great day to break out of your routine and try something different. Whether it's embarking on a spontaneous road trip, signing up for a new class, or simply trying a new cuisine, embrace the spirit of adventure and let your curiosity lead the way.

Taurus (April 20 - May 20):

Taurus, today's horoscope advises you to focus on your financial goals. Take a close look at your budget and savings plan. It might be time to make some adjustments or seek new investment opportunities. With careful planning and discipline, you can make significant progress towards your financial security.

Gemini (May 21 - June 20):

Communication is key for you today, Gemini. Whether it's in your personal or professional life, make an effort to express your thoughts and feelings clearly and honestly. This will lead to better understanding and smoother interactions with others. Don't hesitate to reach out to someone you've been meaning to connect with.

Cancer (June 21 - July 22):

Cancer, your emotions may be particularly strong today. Use this energy to nurture your relationships and connect with loved ones on a deeper level. Don't be afraid to open up and share your feelings with someone you trust. It's a day for emotional growth and

\therefore CONNECTED PAPERS $\quad Q$ DOI: 10.1016/S0005-7894(04)80015-7

Acceptance-Based Treatment for Smoking Cessation

Q Search.

ᄂ Expand
Origin paper
Acceptance-Based Treatment for Smoking Cessation
E. Gifford, B. Kohlenberg, S. Hayes, D. Antonuccio, M.... 2004

A Preliminary trial of twelve-step facilitation and acceptance and commitment therapy with...
S. Hayes, K. Wilson, E. Gifford, R. Bissett, M. Piasecki, ... 2004

Acceptance and commitment therapy for smoking cessation: a preliminary study of its effectiveness i... Mónica Hernández-López, M. C. Luciano, J. Bricker, J.... 2009

Improving diabetes self-management through acceptance, mindfulness, and values: a randomize...
J. Gregg, G, M, Callaghan, S. Hayes, June L. Glenn-...

2007

Does acceptance and relationship focused behavior therapy contribute to bupropion outcomes? A...
E. Gifford, B. Kohlenberg, S. Hayes, Heather M Pierson... 2011

Acceptance and commitment therapy and the treatment of persons at risk for long-term disability...

Welcome to Elicit, your AI research assistant

Q Are mindfulness-based interventions effective for smoking cessation among people who smoke?Final answer

Summary of top 8 papers

The research on mindfulness-based interventions for smoking cessation is promising but mixed. Several studies found that mindfulness training helps smokers quit or reduce smoking. Vinci 2020 found that both cognitive behavioral therapy and mindfulness-based interventions are effective for smoking cessation, especially for certain populations. Oikonomou 2017 conducted a meta-analysis of four RCTs and found that 25.2% of smokers who received mindfulness training quit smoking for over 4 months, compared to only 13.6% of those who received usual care. Davis 2007 found that 56% of smokers who received mindfulness training quit smoking for 6 weeks. Bowen 2009 found that smokers who received brief mindfulness training smoked fewer cigarettes over a week compared to controls. However, other studies found limited or no effect of mindfulness on smoking cessation. Carim-Todd 2013 reviewed 14 studies and found that while the results were promising, the studies had too many limitations and methodological problems to draw a definitive conclusion. Maglione 2017 conducted a meta-analysis of 5 RCTs and found no significant effect of mindfulness meditation on smoking abstinence or number of cigarettes smoked compared to controls. The studies were too heterogeneous and low quality to find an effect. Garrison 2015 proposes an RCT to evaluate a smartphone-based mindfulness intervention for smoking cessation, indicating the research is still ongoing. In summary, while several initial studies found promising effects of mindfulness on smoking cessation and reduction, the research is limited by a small number of studies, methodological weaknesses, and heterogeneity across interventions and measures. Higher quality, larger RCTs that evaluate specific types of mindfulness interventions are still needed to determine if and how mindfulness effectively helps people quit smoking.

Welcome to Elicit, your Al research assistant

Does it enable me to draw on the sum of current knowledge?

Mindfulness for smoking cessation

- Sarah Jackson, Jamie Brown, Emma Norris, Jonathan Livingstone-Banks, Authors' declarations of interest
Version published: 14 April 2022 Version history
https://doi.org/10.1002/14651858.CD013696.pub2[E

Can mindfulness help people to stop smoking?

Key messages

- There is currently no clear evidence that mindfulness-based treatments help people to stop smoking or improve their mental health and well-being.
- However, our confidence in the evidence is low or very low, and further evidence is likely to change our conclusions.

Using question-answering capabilities

Using ChatGPT for screening

LLMs can classify without training data (so-called 'zero shot learning')
We see improvements across 'generations' of OpenAl's GPT models
'Prompting' is key: improving the prompt given can change results significantly ('prompt engineering')

	TP		FN		TN		FP

Screening performance based on studies included / excluded in Shemilt et al (2022) Debunk, Inform, Avoid? Debunking vaccine-related misinformation: a rapid evidence review. London: EPPI Centre (Prompt contains contextual information about the review; short = 263 characters; long $=1,118$ characters)

Classifying types of study

medRxiv
 Spring Sol Hater
 Harbor Laboratory
 BMJ Yale

THE PREPRINT SERVER FOR HEALTH SCIENCES

Development of meta-prompts for Large Language Models to screen titles and abstracts for diagnostic test accuracy reviews

Please determine if an abstract is a Diagnostic Test Accuracy (DTA) study based on the following criteria:

1. A DTA study evaluates a test against a clinical reference standard specifically for humans, with very high sensitivity and reasonable specificity.
2. Include multivariable diagnostic prediction model studies.
3. Exclude the following:

- Prognostic prediction model studies where predictors and outcomes are measured at different time points.
- Modeling studies.
- Studies assessing diagnostic training for medical professionals.
taoka, (D) Ryuhei So, (D) Masahiro Banno, (D) Junji Kumasawa, (D) Hidehiro Someko, (D) Shunsuke Taito, Eerasawa, (c) Yasushi Tsujimoto, (0) Yusuke Tsutsumi, (c) Yoshitaka Wada, (D) Toshi A. Furukawa ://doi.org/I0.1101/2023.10.31.23297818
icle is a preprint and has not been peer-reviewed [what does this mean?]. ts new medical research that has yet to be evaluated and so should not be guide clinical practice.

0	20 0	$\omega_{0}^{*} 0$	$\square 0$	詯 0	510

t Full Text Info/History Metrics \square Preview PDF

Data
 (information) extraction

Al research and products that put safety at the frontier

NEW

Claude in Beta, now available!
Your friendly assistant. Fast, capable, and truly conversational.

ENTERPRISE

Build with Claude
Start using Claude and unlock business value with AI.

[^0]Here is a report of a randomized trial. State: the population recruited; the intervention(s) evaluated; the main outcome(s) measured; and the statistical results of the primary outcome

According to the paper, this randomized controlled trial had the following key details: Population:

- 4613 participants aged $18+$ years who smoked daily and were willing to make a serious quit attempt in the UK.
- Recruited online, mainly via the English Department of Health website.
- Stratified into low socioeconomic status ($\mathrm{n}=2142$) and high socioeconomic status ($\mathrm{n}=2471$) based on occupation.

Interventions:

- Interactive internet-based smoking cessation website called StopAdvisor.
- Control group received a 1-page static website with brief standard smoking cessation advice.

Main outcome:

- Primary outcome was biochemically verified 6-month sustained abstinence from smoking (self-report of smoking ≤ 5 cigarettes in the past 6 months plus saliva cotinine $<15 \mathrm{ng} / \mathrm{mL}$).

Results:

- No overall difference between groups in 6-month abstinence (StopAdvisor 10% vs control 10%, RR $1.06,95 \% \mathrm{Cl} 0.89-1.27, \mathrm{p}=0.49$).
- In the low SES subgroup, 6-month abstinence was higher in StopAdvisor vs contro (8% vs 6%, RR $1.36,95 \%$ CI $1.00-1.86, \mathrm{p}=0.0499$).
- No difference between groups in the high SES subgroup (StopAdvisor 12% vs control 13%, RR $0.95,95 \% \mathrm{Cl} 0.77-1.17, \mathrm{p}=0.61$).

Internet-based intervention for smoking cessation (StopAdvisor) in people with low and high socioeconomic status: a randomised controlled trial

Summary

Background Internet-based interventions for smoking cessation could help millions of people stop smoking at very low unit costs; however, long-term biochemically verified evidence is scarce and such interventions might be less effective for smokers with low socioeconomic status than for those with high status because of lower online literacy to engage with websites. We aimed to assess a new interactive internet-based intervention (StopAdvisor) for smoking cessation that was designed with particular attention directed to people with low socioeconomic status.

Methods We did this online randomised controlled trial between Dec 6, 2011, and Oct 11, 2013, in the UK. Participants aged 18 years and older who smoked every day were randomly assigned (1:1) to receive treatment with StopAdvisor or an information-only website. Randomisation was automated with an unseen random number function embedded in the website to establish which treatment was revealed after the online baseline assessment. Recruitment continued until the required sample size had been achieved from both high and low socioeconomic status subpopulations. Participants, and researchers who obtained data and did laboratory analyses, were masked to treatment allocation. The primary outcome was 6 month sustained, biochemically verified abstinence. The main secondary outcome was 6 month, 7 day biochemically verified point prevalence. Analysis was by intention to treat. Homogeneity of intervention effect across the socioeconomic subsamples was first assessed to establish whether overall or separate subsample analyses were appropriate. The study is registered as an International Standard Randomised Controlled Trial, number ISRCTN99820519.

Findings We randomly assigned 4613 participants to the StopAdvisor group ($\mathrm{n}=2321$) or the control group ($\mathrm{n}=2292$); 2142 participants were of low socioeconomic status and 2471 participants were of high status. The overall rate of smoking cessation was similar between participants in the StopAdvisor and control groups for the primary (237 [10\%] vs $220[10 \%]$ participants; relative risk [RR] $1.06,95 \%$ CI $0.89-1 \cdot 27 ; \mathrm{p}=0.49$) and the secondary (358 [15\%] vs 332 [15\%] participants; $1.06,0.93-1 \cdot 22 ; p=0.37$) outcomes; however, the intervention effect differed across socioeconomic status subsamples ($1.44,0.99-2.09 ; \mathrm{p}=0.0562$ and $1.37,1.02-1.84 ; \mathrm{p}=0.0360$, respectively). StopAdvisor helped participants with low socioeconomic status stop smoking compared with the information-only website (primary outcome: $90[8 \%]$ of 1088 vs 64 [6\%] of 1054 participants; RR $1.36,95 \%$ CI $1.00-1 \cdot 86$; $p=0.0499$; secondary outcome: $136[13 \%]$ vs $100[10 \%]$ participants; $1 \cdot 32,1 \cdot 03-1 \cdot 68, \mathrm{p}=0.0267$), but did not improve cessation rates in those with high socioeconomic status (147 [12%] of 1233 vs 156 [13%] of 1238 participants; $0 \cdot 95,0 \cdot 77-1 \cdot 17 ; \mathrm{p}=0.61$ and 222 [18\%] vs $232[19 \%]$ participants; $0.96,0.81-1 \cdot 13, p=0.64$, respectively).

Lencet tespir Mel 201 Publisted Online Spptember 25.2014
 $52213 \cdot 2600(14770195$. Seo Onlinel Comment $5223.2600(247722140$
 Behaviour Reserch Cent Department of Epidemiol and Public Heath (B Bocom 1 I BGerdrer Deftil. LStahab Pho. Prof RWest Pho and Department of CCinical ducationol and Health pyxtology Colisel mectie OPehll, Univesisity College London London. UK;
National \mathbf{C} Centre for Smoking Cesstion and Training. London, UK(Prot 5 Misicie Prof RWest) Primay Care and Pepplation 5 Siences (AWA Genghty Phb) and School of Pyychology
Prof I Yasdece Phol U of Southampton, Southempton, UK:Addicicio Department, institute of Prychatry, Kings College London, London, UK
(IA Stapoten MSC) (JA Stapetion MSx: Dr farmeie Brown, Hest groups for both the primary (237 [10\%] vs 220 [10%] participants; relativ risk [RR] 1.06, 95\% CI 0.89-1.27; $\mathrm{p}=0.49$) and the se ondary (358 [15%] vs 332 [15\%] participants; $1.06,0.93-1 \cdot 2 \cdot n=0.37$) outcomes. Howeve, analysis of the interaction between intervention and socioeconomic status showed clear evidence of nonignorable heterogeneity of intervention effect by both primary (RR $1.44,95 \% \mathrm{CI} 0.99-2.09 ; \mathrm{p}=0.0562$) and secondary ($1.37,1 \cdot 02-1 \cdot 84 ; \mathrm{p}=0.0360$) cessation measures. This finding was evident before and after adjustment for all other baseline characteristics (adjusted data not shown). Consequently, the analysis of outcome was done separately within each of the two socioeconomic status subsamples. In the subsample of participants with low socioeconomic status, a benefit of StopAdvisor was evident for both primary and secondary measures compared with the information-only website, whereas in those with high socioeconomic status, no evidence of a difference was shown (table 2). Adjustment for all baseline characteristics had a negligible effect on these comparisons (table 2). In a post-hoc sensitivity analysis, we re-examined the effect of StopAdvisor on biochemically verified smoking cessation in participants with low socioeconomic status, after exclusion of those in full-time education from the classification ($n=237$). The benefit of StopAdvisor compared with the informationonly website remained in both unadjusted (primary outcome 87 [9%] of 967 vs 60 [6\%] of 938 participants; RR $1 \cdot 41,95 \%$ CI $1.03-1 \cdot 93 ; p=0.0346$; secondary

SUCL

	StopAdvisor	Control	Relative 1 smane	Odds ratio ($95 \% \mathrm{Cl})^{*}$	Percentage-point difference ($95 \% \mathrm{Cl}$)	p valuet
High SES	147/1233 (12\%)	156/1238 (13\%)	0.95 (0.77 to 1.17)	4 (0.74 to 1.19$)$	$-0.68(-3.27$ to 1.91$)$	0.61
Adjusted	.	-	0.97 (0.78 to 1.19) \ddagger	$95(0.75$ to 1.22) \ddagger	.	0.75
	90/1088 (8\%)	64/1054 (6\%)	1.36 (1.00 to 1.86)	39 (1.00 to 1.94)	$2 \cdot 20$ (0.02 to 4.38)	0.0499
		-	$1.43(1.05 \times-90) 7$	1.46 (1.04 to 2.05$) \ddagger$..	0.0238

who did not have post-16 education. In this smaller -imary analyses for StopAdvisor versus information on y, but were nor 818 participants; econdary outcome $1.2 \mathrm{~N} 0.93-1.58 ; \mathrm{p}=$ 1.27, 22-1.75; $0.92-1.58 ;-0.17)$ analysis, we reva self-reported rathe of smoking cessati basis of similar verification criteri new analyses show reported in table 2 socioeconomic sta compared with inf not significant 141 [13\%] of 1088 unadjusted RR 1.20 RR 1.23, 0.97-1 prevalence 227 [21\% RR 1.13, 0.95-1.34 $\mathrm{p}=0.07$). That str in participants , with failed to rea h sig decreased power betwee, the two gr

Al

Here is a table summarizing the key outcomes of the study:

		StopAdvisor	Control	Relative Risk (95\% CI)	p-value
	Overall				
	6-month abstinence	10\%	10\%	1.06 (0.89-1.27)	0.49
	Low SES				
	6-month abstinence	8\%	6\%	1.36 (1.00-1.86)	0.0499
	High SES				
	6-month abstinence	12\%	13\%	0.95 (0.77-1.17)	0.61
Al	\square Copy				

	StopAdvisor	Control	Relative risk (95\% CI)	Odds ratio (95\% CI)*	Percentage-point difference ($95 \% \mathrm{Cl}$)	p valuet
Primary outcome (abstinence for 6 months)						
High SES	147/1233 (12\%)	156/1238 (13\%)	0.95 (0.77 to 1.17)	0.94 (0.74 to 1.19)	-0.68 (-3.27 to 1.91)	0.61
Adjusted	-	-	0.97 (0.78 to 1.19) \ddagger	0.95 (0.75 to 1.22) \ddagger	..	0.75
Low SES	90/1088 (8\%)	64/1054 (6\%)	1.36 (1.00 to 1.86)	1.39 (1.00 to 1.94)	2.20 (0.02 to 4.38)	0.0499
Adjusted			1.43 (1.05 to 1.96) \ddagger	1.46 (1-04 to 2.05) \ddagger	..	0.0238
Secondar oucome (point prevalence at 6 months)						
上HinSES	222/1233 (18\%)	232/1238 (19\%)	0.96 (0.81	0.95 (0.78 to 1.17)	$-0.74(-3.79$ to 2.32$)$	0.64
Adjusted	.	-	0.96 (0.82 to 1.14)+	0.95 (0.77 to 1.17) \ddagger	-	0.66
Low SES	136/1088 (13\%)	100/1054 (10\%)	1.32 (1.03 to 1.68)	1.36 (1.04 to 1.79)	3.01 (0.37 to 5.66$)$	0.0267
Adjusted	.	.	1.39 (1.09 to $1.7{ }^{\circ} \mathrm{st}$	1.41 (1.07 to 1.88) \ddagger	..	0.0081

Data are n / N (\%) locsotherwise indicated. SES=50cioeconomicstat. ne tate for reporting not smoking but failing to provide biochemical verification was 5%
 Participants lost to follow-up were counted as treatment failures. "Ouds ratios rather than relative risks were specified as the measure of effect in the protocol. Relative risks were also calculated to improve understanding. tin the case of the adjustea nalyses, p values relate to the log-binomial models used to calculate the relative risk. \ddagger The primary analyses were all unadjusted. Adjusted results are presented as a sensitivns, ranalysis. The adjusted models include all characteristics presented in table 1.

Table 2: Effect of StopAdvisor on biochemically verified smoking cessation

The study authors did not report a risk of bias assessment using the Cochrane RoB tool. However, here are some observations about potential risks of bias based on the details provided in the paper:

- Random sequence generation: Participants were randomized using an automated unseen random number function, so this should have been adequate.
- Allocation concealment: The randomization was automated with no experimenter involvement, so allocation was likely adequately concealed.
- Blinding of participants/personnel: Not reported, but blinding of participants may not have been feasible given the difference in intervention. Personnel were likely not blinded.
- Blinding of outcome assessment: Outcome assessors were reported to be blinded to treatment allocation.
- Incomplete outcome data: Follow-up rates were 77% overall and similar between groups, with missing data treated as smoking, so the risk appears low.
- Selective reporting: The outcomes specified in the protocol appear to be reported, suggesting low risk of bias.
- Other biases: The study appears to have been adequately powered and analyzed as pre-specified, with low risks of other biases.

So in summary, the lack of blinding of participants and personnel, as well as the lack of formal risk of bias assessment by the authors, suggest some uncertainties but overall the study seems reasonably well conducted.

The problem of bias

Nearest points in the original space:

4 ICl

'closest' terms to 'boys'
'closest' terms to 'girls'

Bias in ChatGPT

A Doctor arrives at the surgery and is angry with the nurse because she was late. Who does the pronoun 'she' refer to in this sentence?

The pronoun "she" in this sentence refers to the nurse.

JA A Doctor arrives at the surgery and is angry with the nurse because he was late. Who does the pronoun 'he' refer to in this sentence?

In the given sentence, the pronoun "he" refers to the Doctor who arrived at the surgery and is angry with the nurse because he was late.

What are tool producers doing about it?

- Trying to remove 'toxicity' from training data
- Trying to pre- and postfilter responses
- Reporting how 'toxic' their models score on standard tests (sometimes)
- But are still deploying the models

Technologies behind the tools

ConnectedPapers

Elicit, EPPI Reviewer

Is a language model, not a database

A database building on Open Access data

Database + language model + machine learning

Using a large language model for information (data) extraction

Not comprehensive; not up to date; unsuitable for answering questions using research evidence

Could be comprehensive and up to date (evaluation needed); more work required by user for synthesis

Could be comprehensive (evaluation needed); summary tools do not (yet) take account of study size / reliability

Constraining LLM to 'look' only at the document looks promising. Key is to limit possibility for 'hallucinations'. (More research needed)

Conclusion

- Many promising new tools are available thanks to
- Open access data
- Increased compute resource
- Advances in NLP / machine learning technologies
- Really important to consider
- Issues of bias
- The dataset that the tool is using
- Whether summaries are based on full and reliable information
- Are generative LLMs a gamechanger? Probably!
- The question is how they change the game:
- towards increased reliability
- or increased uncertainty

IIIII

CI

Thank you

James Thomas

EPPI-Centre website: http://eppi.ioe.ac.uk Email
james.thomas@ucl.ac.uk
Twitter (rarely now it's X)
James_M_Thomas

Social Science Research Unit
Institute of Education
University of London
18 Woburn Square
London WC1H 0NR
Tel +44 (0)20 76126397
Fax +44 (0)20 76126400
Email eppi@ioe.ac.uk
Web eppi.ioe.ac.uk/

[^0]: Submit business interest

